Publications

  1. Araya, Ignacio A. ; Valle, Carlos ; Allende, Hector: A Multi-Scale Model based on the Long Short-Term Memory for day ahead hourly wind speed forecasting. In Pattern Recognition Letters, 136, pp. 333-340. 2020.
  2. Rodrigo Alfaro, A., Héctor Allende, O.: Multi-Label Text Classification with Multi-Variate Bernoulli Model and Label Dependent Representation. In Revista Signos, 53 (104), pp. 549-567. 2020.
  3. Serpell Cristian , Araya Ignacio, Valle Carlos , Allende Héctor: Addressing model uncertainty in probabilistic forecastingusing monte acrlo Dropout. In Intelligent Data Analysis, 24 (S1), pp. S185-S205. 2020.
  4. loz, Alejandro ; Moraga, Claudio ; Weinstein, Alejandro; Hernandez-Garcia, Luis ; Chabert, Steren ; Salas, Rodrigo ; Riveros, Rodrigo ; Bennett, Carlos ; Allende, Hector: Fuzzy General Linear Modeling for Functional Magnetic Resonance Imaging Analysis. In IEEE Transactions on Fuzzy Systems, 28 (1), art. no. 8809273, pp. 100-111. 2020.
  5. Araya, Ignacio A. ; Valle, Carlos ; Allende, Hector: A Multi-Scale Model based on the Long Short-Term Memory for day ahead hourly wind speed forecasting. In PATTERN RECOGNITION LETTERS. 2020.
  6. Solis, Miguel A. ; Olivares, Manuel ; Allende, Hector: A Switched Control Strategy for Swing-Up and State Regulation for the Rotary Inverted Pendulum. In STUDIES IN INFORMATICS AND CONTROL. 2019.
  7. Valle, Carlos ; Nanculef, Ricardo ; Allende, Hector ; Moraga, Claudio: LocalBoost: A Parallelizable Approach to Boosting Classifiers. In NEURAL PROCESSING LETTERS. 2019.
  8. Lopez, Erick ; Valle, Carlos ; Allende, Hector: Wind Power Forecasting Based on Echo State Networks and Long Short-Term Memory. In ENERGIES. 2018
  9. A.  Veloz, R. Salas,  H. Allende-Cid, H . Allende, C. Moraga: Identification of Lags in Nonlinear Autoregressive Time Series Using a Flexible Fuzzy Model. In NEURAL PROCESSING LETTERS. Vol. 43 pp 641-666, 2016.
  10. J. Zamora, M. Mendoza, H. Allende: Hashing-based clustering in high dimensional data. Expert Systems with Applications. In Expert Systems with Applications.  Vol. 62, pp 202-211, 2016 (ISI).
  11. M. Solis, M. Olivares, H. Allende: Stabilizing Dynamic State Feedback Controller Synthesis: A Reinforcement Learning Approach In Studies in Informatics and Control Vol. 25 (2), pp 245-254, 2016 (ISI).
  12. T. Mardones, H. Allende, C. Moraga: Leveraging similarities and structure for dense representations combination in image retrieval. In Journal of Visual Communication & Image Representation Vol. 38, pp 641-657, 2016 (ISI).
  13. R. Salas, A. Veloz, C. Moraga, H. Allende. SONFIS: Structure identification and Modeling with a Self-Organizing Neuro-Fuzzy Inference System. In International Journal of Computational Intelligence Systems. Vol. 9 (3), pp 416-432. 2016 (ISI).
  14. H. Allende-Cid, R. Monge, H. Allende: Soft Computing Applied to Distributed Regression with Context-Heterogeneity. In Journal for Multi-Valued Logic and Soft Computing. Vol. 26, pp 389-416, 2016 (ISI).
  15. H. Allende-Cid, H. Allende, R.  Monge, C.  Moraga: Discrete Neighborhood Representations and Modified Stacked Generalization Methods for Distributed Regression. Journal of  Universal Computer Science 2015 .  Volume 21, (6), pp 842-855, 2015  (ISI).
  16. H. Allende. Comments on: A conversation with Oscar Bustos. In Chilean Journal of Statistics Vol. 6, No. 2, pp 95-96. 2015.
  17. E. Canessa, H. Allende:  Performance of a Genetic Algorithm applied to Robust Design in Multi-objective Systems under different Levels of Fractioning.  Rev. Fac. Ing. Univ. Antioquia.   N. º 75 pp. 80-94, June 2015.   
  18. J. Zamora, M. Mendoza, H. Allende: Query intent detection based on query log mining. In Journal of Web Engineering, Vol. 13(1), pp 24-52.  2014 (ISI).
  19. G. Ulloa, H. Allende-Cid, H. Allende:  Robust Sieve Bootstrap Prediction Intervals for Contaminated Time Series.  In International Journal of Pattern Recognition and Artificial Intelligence, Vol. 28 (7), pp 1-14. 2014 (ISI).
  20. R. Ñanculef,  E. Frandi, C. Sartori, H. Allende: A Novel Frank-Wolfe Algorithm. Analysis and Applications to Large-Scale SVM Training. In Journal Information Science. Vol. 285, pp 66-99. 2014 (ISI).
  21. E. Canessa, H. Allende: “Robust Design in Multiobjective Systems using Taguchi’s Parameter Design Approach and Pareto Genetic Algorithm”. Revista Facultad de Ingeniería, Universidad de Antioquia. Vol.72, pp 73-86.  2014 (ISI).
  22. F. Ramírez, H. Allende:  Detection of flaws in aluminum castings: a comparative study between generative and discriminant approaches. In Journal Insight, Non-Destructive Testing and Condition Monitoring, Vol. 55 (7), pp 366-371. 2013 (ISI).
  23. R. Ñanculef, C. Valle, H. Allende, C. Moraga: “Training regression ensembles by sequential target correction and resampling”. In Information Science Vol. 195, 154-174. 2012 (ISI).
  24. C. Fernández, C. Valle, F. Saravia, H. Allende: “Behavior analysis of neural network ensemble algorithm on a virtual machine cluster”. In Neural Computing and Applications Vol. 21(3), pp 535-542. 2012 (ISI).
  25. E. Canessa, C. Droop and H. Allende: “An Improved Genetic Algorithm for Robust Design in Multivariate Systems”. In Journal Quality & Quantity, Vol. 46 (2), pp   665-678. 2012 (ISI).
  26. E. Canessa, S. Vera and H. Allende: “A new method for estimating missing values for a Genetic Algorithm used in robust design”. Engineering Optimization Vol. 44 (7), 787-800. 2012 (ISI).
  27. R. Salas, C. Saavedra. H. Allende and C. Moraga: “Machine Fusion to Enhance the Topology Preservation of Vector Quantization Artificial Neural Networks”. In Pattern Recognition Letters. Vol. 32 (7), pp 962-972, 2011 (ISI).
  28. H. Allende-Cid, E. Canessa, A. Quezada, H. Allende: “An Improved Fuzzy Rule-based Automated Trading Agent”. In Studies in Informatics and Control; Vol. 20 (2): 135-142, 2011 (ISI).
  29. C. Valle, F. Saravia, H. Allende, R. Monge and C. Fernández: “Parallel Approach for Ensemble Learning with Locally Coupled Neural Networks”. In Neural Processing Letters Vol. 2 (3): 277-291, 2010.
  30. H. Allende, D. Bravo and E. Canessa: “Robust Design in Multivariate Systems using Genetic Algorithms”. In Journal Quality & Quantity Vol. 44 (2): 315- 332, 2010 (ISI).
  31. R. Ñanculef, C. Concha, H. Allende, D. Candell and C. Moraga: “AD-SVMs: A Light Extension of SVMs for Multicategory Classification”. In International Journal of Hybrid Intelligence Systems (JHIS), Vol. 6 (2): 69-79, 2009
  32. R. Salas, H. Allende, S. Moreno, C. Moraga: “A Robust and flexible model of Hierarchical Self Organizing Map for non-stationary environments”. Journal Neuro-computing. Vol. 70 (16-18), pp 2744-2757, 2007 (ISI).
  33. R. Ñanculef, C. Valle, H. Allende, C. Moraga: “Ensemble Learning with Local Diversity”.  ICANN-2006. Artificial Neural Networks, Lecture Notes in Computer Science, Vol. 4131, pp 264-273, 2006 (ISI).
  34. H. Allende, A.  Frery, J. Galbiati, L. Pizarro: M-Estimators with Asymmetric Influence Functions the Distribution GA0 Case. Journal of Statistical Computation and Simulation, Vol. 76 (11): 941-956, 2006 (ISI).
  35. R. Ñanculef, C. Valle, H. Allende, C. Moraga: Local Negative Correlation with Resampling.  In Lecture Notes in Artificial Intelligence, Springer-Verlag  Vol. 4224, p 570-577, 2006 (ISI).
  36. S. Moreno, C. Saavedra, R. Salas and H. Allende: “Robustness Analysis of the Neural Gas Learning Algorithm”. In Lecture Note in Computer Science, Serie LNAI, Vol. 4225, pp 559-568, 2006 (ISI).
  37. R. Ñanculef, C Valle, H. Allende, C. Moraga:  “Self-Poised Ensemble  Learning”.  In Lecture Notes in Computer Science:  Advances in Intelligence Data Analysis, Vol. 3646, pp 272-282, 2005 (ISI).
  38. S. Moreno, H. Allende, C. Rogel and R. Salas:  “Robust Growing Hierarchical Self Organizing Map”.  In Lecture Notes in Computer Science, Vol. 3512, pp 341-348, 2005 (ISI).
  39. R. Ñanculef, C Valle, H. Allende, C. Moraga: “Moderated Innovations in Self-Poised Learning Ensemble Learning”. CIS-2005, Xian China.  LNCS- LNAI Vol. 3801, pp 49-56, 2005 (ISI).
  40. C. Saavedra, H. Allende, S. Moreno, R. Salas:  “K-Dynamical Self Organizing Maps”.  In Lecture Notes in Computer Science: “Artificial Intelligence.  Serie, LNAI Vol. 3789, pp. 702-711; 2005 (ISI).
  41. R. Salas, H. Allende, S. Moreno and C. Saavedra:  “Flexible architecture of Self Organizing Maps in changing environments”. In Lecture Notes in Computer Science: Pattern Recognition and Image Analysis.  Vol. 3773, pp 642-653, 2005 (ISI).
  42. H. Allende and J. Galbiati:  “Edge detection in contaminated images, using cluster analysis”.  In Lecture Notes in Computer Science: “Pattern Recognition and Image Analysis”. Vol. 3773, pp 945-953, 2005 (ISI).
  43. H. Allende, S. Moreno, C. Rogel, R. Salas:  “Robust Self-organizing Maps”. In Lecture Notes in Artificial Intelligence; Vol. 3287, pp 179-186, 2004 (ISI).
  44. H. Allende, N. Lacourly, S. Torres:  “A Robust Portmanteau TRA Tests and their Limit Distribution”.  In Communications in Statistical, Theory and Methods; Vol. 33 (8), pp  1899-1915, 2004 (ISI).
  45. H. Allende, R. Ñanculef, R. Salas:  “Robust Bootstrapping Neural Networks”. In LNCS, Lecture Notes in Artificial Intelligence; Vol. 2972, pp   813-822, 2004 (ISI).
  46. H. Allende, C. Elías, S. Torres: “Estimation of the Option Prime: Microsimulation of Backward Stochastic Differential Equations”. In International Statistical Review, Vol. 72, pp  107-121, 2004 (ISI).
  47. H. Allende, J. Galbiati: “A Non-parametric Filter for Digital Image Restoration, using Cluster Analysis”. In Pattern Recognition Letters; Vol. 25(8), pp 841-847, 2004 (ISI).
  48. H. Allende, C. Moraga, R. Salas, R. Torres: “Robust Expectation Maximization Learning Algorithm for Mixture of Experts”. In Lecture Notes in Computer Science: Computational Methods in Neural Modeling.  Vol. 2686, pp   238-245, 2003 (ISI).
  49. H. Allende, L. Pizarro: “Robust Estimation of Roughness Parameter in SAR Amplitude Images”.  In Lecture Notes in Computer Science: Pattern Recognition and Image Analysis. Vol. 2905, pp 129-136, 2003 (ISI).
  50. R. Salas, R. Torres, H. Allende, C. Moraga: Robust Estimation of Confidence Interval in Neural Networks applied to Time Series. In Lecture Notes in Computer Science: Artificial Neural Nets Problem Solving Methods; Vol. 2687: 441-448, 2003 (ISI).
  51. H. Allende, C. Moraga, R. Salas, R. Torres: “Robust Learning Algorithm for the mixture of experts”.  In Lecture Notes in Computer Science: Pattern Recognition and Image Analysis. Vol. 2652, pp 19-27, 2003 (ISI).
  52. H. Allende, C. Moraga, R. Salas: “Robust and effective learning algorithm for the Feedforward neural based on the Influence Function”.  In Lecture Notes in Computer Science: Patterns Recognition and Image Analysis. Vol. 2652, pp  28-36, 2003 (ISI).
  53. H. Allende, C. Moraga, R. Salas: Robust Estimator for the learning Process in Neural Networks applied in Time Series. In Lecture Notes in Computer Science:  Artificial Neural Network.  Vol. 2415, pp 1080-1086, 2002 (ISI).
  54. H. Allende, C. Moraga, R. Salas: Artificial Neural Networks in Time Series Forecasting: A comparative Analysis”.  In Kybernetika Vol. 38 (6). Pp  685-707, 2002 (ISI).
  55. H. Allende, J. Galbiati, R. Vallejos: Robust Image Modeling on Image Processing. In Pattern Recognition Letters.  Vol. 22, pp 1219-1231, 2001 (ISI).
  56. H. Allende, C. Moraga, R. Salas:  Neural Model Identification using Local Robustness Analysis. In Lecture Notes in Computer Science: Computational Intelligence.  Vol. 2206, pp   162-173, 2001 (ISI).
  57. H. Allende, J. Galbiati: “Discussion of Using Statistics and Statistical Thinking to improve Organizational Performance”.   In International Statistical Review. Vol. 67(2), pp 122-126, 1999 (ISI).
  58. H. Allende, J. Galbiati: “Digital Image restoration using Autoregressive Time series type models”. In Bulletin ESA. Vol. 434, pp 53-59, 1998.
  59. H. Allende, J. Galbiati: Robust Test in time series Modelling. In Journal of the Inter-American Statistical Institute, Vol. 48 (151), pp. 35-79, 1996.  
  60. G. del Pino, R. Aravena, H. Allende, P. Iglesias, G. Marshall: “Comentarios sobre Propuesta Curricular para Estadística y Probabilidad en la Educación Media”. Chilean Journal of Statistics Vol. 13, pp. 57-72; 1996.
  61. H. Allende, S. Heiler: “Recursive Generalized M-Estimate for Autoregressive Moving Average Models”. Journal of Time Series Analysis, Vol. 13 (1), pp 1- 18, 1992 (ISI).
  62. H. Allende: “Robust Recursive Estimation of Autoregressive Models”. Chilean Journal of Statistics Vol. 6, pp. 3-19, 1990.
  63. H. Allende, E. Valenzuela: “Interpolación en series de tiempo con aplicación a la estimación de datos faltantes en una serie Eólica”, Chilean  Journal of Statistics. Vol. 1 (1-2), pp. 46-53, 1984
  1. Hermosilla, R., Valle, C., Allende, H., Lucic, E., Espinoza, P.: Semi-Autogeonous (SAG) Mill Overload Forecasting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12702 LNCS, pp. 392-401, 2021.
  2. Rodríguez, S.E., Allende-Cid, H., Allende, H.: Detecting Hate Speech in Cross-Lingual and Multi-lingual Settings Using Language Agnostic Representations. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12702 LNCS, pp. 77-87. 2021.
  3. Valderrama, A., Valle, C., Ibarra, M., Allende, H.: A Heterogeneous 1D Convolutional Architecture for Urban Photovoltaic Estimation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12836 LNCS, pp. 435-449, 2021.
  4. Ulloa, G., Veloz, A., Allende-Cid, H., Allende, H.: Improving multiple sclerosis lesion boundaries segmentation by convolutional neural networks with focal learning. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Volumen: 12132 LNCS, Número: 12132 LNCS, Páginas: 182-192, 2020.
  5. López, E., Valle, C., Allende-Cid, H., Allende, H: Comparison of recurrent neural networks for wind power forecasting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Volumen: 12088 LNCS, Número: 12088 LNCS, Páginas: 25-34, 2020.
  6. Araya, I.A., Valle, C., Allende, H.: LSTM-based multi-scale model for wind speed forecasting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Volumen: 11401 LNCS, Número: 11401 LNCS, Páginas: 38-45, 2019.
  7. Campos, S., Veloz, A., Allende, H.: An out of sample version of the EM algorithm for imputing missing values in classification. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Volumen: 11401 LNCS, Número: 11401 LNCS, Páginas: 194-202, 2019.
  8. Serpell, C., Allende, H., Valle, C.: Regularization for graph-based transfer learning text classification. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Volumen: 11401 LNCS, Número: 11401 LNCS, Páginas: 849-856, 2019.
  9. Serpell, C., Araya, I., Valle, C., Allende, H., Araya, Ignacio: Probabilistic Forecasting Using Monte Carlo Dropout Neural Networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Volumen: 11896 LNCS, Número: 11896 LNCS, Páginas: 387-397, 2019.
  10. Ulloa, G., Naranjo, R., Allende-Cid, H., Chabert, S., Allende, H: Circular non-uniform sampling patch inputs for CNN applied to multiple sclerosis lesion segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Volumen: 11401 LNCS, Número: 11401 LNCS, Páginas: 673-680, 2019.
  11. Naranjo, R., Ulloa, G., Allende-Cid, H., Allende, H: Convolutional neural networks applied to multiple sclerosis lesion segmentation on 3D brain magnetic resonance images. IET Conference Publications, Volumen: 2018, Número: CP745, Páginas: 7-11, 2018.
  12. López, E., Valle, C., Allende, H., Gil, E.: Long short-term memory networks based in echo state networks for wind speed forecasting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Volumen: 10657 LNCS, Número: 10657 LNCS, Páginas: 347-355, 2018.
  13. Pavez, J., Allende, H., Allende-Cid, H., Pavez, Juan, Allende-Cid, Hector: Working memory networks: Augmenting memory networks with a relational reasoning module. ACL 2018 – 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers), Volumen: 1, Número: 1, Páginas: 1000-1009, 2018.
  14. Pavez, J., Hakobyan, H., Valle, C., Kuleshov, S., Allende, H. y Pavez J: Neural networks for the reconstruction and separation of high energy particles in a preshower calorimeter. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Volumen: 10657 LNCS, Número: 10657 LNCS, Páginas: 491-498, 2018.
  15. Valenzuela, C., Allende, H., Valle, C.: Multi-horizon scalable wind power forecast system. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Volumen: 11047 LNCS, Número: 11047 LNCS, Páginas: 317-325, 2018.
  16. Allende, H., Valle, C.: Ensemble methods for time series forecasting. Studies in Fuzziness and Soft Computing, Volumen: 349, Número: 349, Páginas: 217-232, 2017
  17. Allende-Cid, H., Acuña, D., Allende, H., Allende-Cid, Hector, Acuna, Diego: Subsampling the concurrent AdaBoost algorithm: An efficient approach for large datasets. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Volumen: 10125 LNCS, Número: 10125 LNCS, Páginas: 318-325, 2017.
  18. E. López, C. Valle, H. Allende and E. Gil: “Long Short-Term Memory Networks Based in Echo State Networks for Wind Speed Forecasting”. CIARP 2017, Valparaíso, Chile, November 2017.
  19. J. Pavez, H. Hakobyan, C. Valle, W. Brooks, S. Kuleshov and H. Allende: “Neural Networks for the Reconstruction and Separation of High Energy Particles”. CIARP 2017, Valparaíso, Chile, November 2017.
  20. E. López, C. Valle, H. Allende and E. Gil: Efficient Training over Long  Short-Term Memory Networks for Wind Speed Forecasting. CIARP 2016, Lima, Perú. 8-11 November 2016.
  21. H. Allende-Cid, D. Acuña and H. Allende-Cid: “Sub-sampling the Concurrent Adaboost Algorithm: An Efficient Approach For Large Datasets”. CIARP 2016 and publication in the LNCS proceedings. Lima, Peru. November 2016.
  22. J. Pavez, C. Valle, and H. Allende: “Covariate shift method using approximated density ratios”. In Proceedings International Conference on Pattern Recognition Systems (ICPRS-16). Talca, Chile. April 2016.
  23. H. Allende-Cid, C. Moraga, R. Monge, and H. Allende: “The Problem of Centralizing Distributed Data Sources in the Regression Task”. In Proceedings International Conference on Pattern Recognition Systems (ICPRS-16).  Talca, Chile. April 2016.
  24. E. López, C. Valle and H. Allende: ‘Recurrent Networks for Wind Speed Forecasting”. In Proceedings International Conference on Pattern Recognition Systems (ICPRS-16). Talca, Chile. April 2016.
  25. D. Acuña, H. Allende: El rol de los supuestos distribucionales en modelos GARCH asimétricos para la predicción de la volatilidad. XLII Jornadas Nacionales de Estadística (JNE 2015). Univ. del Bio-Bio.  Concepción entre el 14 y 16 de octubre de 2015.
  26. A. Veloz, L. Hernandez, H. Allende, C. Moraga, R. Salas, and S.Chabert:  Fuzzy General Linear Model for functional Magnetic Resonance Imaging.  International Society for Magnetic Resonance in Medicine (ISMRM 2015), 30 de mayo – 5 de junio de 2015, Toronto, Canadá.
  27. T. Mardones, H. Allende, C. Moraga: Combining Fisher Vectors in image retrieval Using different sampling techniques. ICPRAM 2015 – 4th International Conference on Pattern Recognition Applications and Methods, Lisbon Portugal 10-12 January 2015.
  28. D. Acuña, H. Allende-Cid, H. Allende: The effect of innovation assumptions on asymmetric GARCH models for volatility forecasting.  20th Iberoamerican Congress on Pattern Recognition (CIARP 2015) 9-12 nov 2015. Montevideo, Uruguay. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9423, pp. 3-10.
  29. T. Mardones, H. Allende, C. Moraga:  Graph Fusion Using Global Descriptors for Image Retrieval.  20th Iberoamerican Congress on Pattern Recognition (CIARP 2015) 9-12 nov 2015. Montevideo, Uruguay. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9423, pp. 290-297.  DOI: 10.1007/978-3-319-25751-8_35.
  30. G. Ulloa, H. Allende-Cid, H. Allende: Image edge detection based on a spatial autoregressive bootstrap approach.  20th Iberoamerican Congress on Pattern Recognition (CIARP 2015)   9-12 nov 2015. Montevideo, Uruguay. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9423, pp. 408-415.   DOI: 10.1007/978-3-319-25751-8_49.
  31. S. Campos, L. Pizarro, C. Valle, K. Gray, H. Allende, D. Rueckert: Evaluating imputation techniques for missing data in ADNI: A patient classification study.  20th Iberoamerican Congress on Pattern Recognition (CIARP 2015)  9-12 nov 2015. Montevideo, Uruguay
  32. H. Allende-Cid, C. Valle, C. Moraga, H. Allende, R.Salas: Improving  the Weighted Distribution Estimation for AdaBoost using a Novel Concurrent.  IDC-2015 Intelligent Distributed Computing 7-9 Octubre, Guimaraes, Portugal.
  33. E. López, H Allende, H. Allende-Cid: “Machine Learning Method for High-Frequency Data Forecasting”.  19th Iberoamerican Congress, CIARP. Proceedings. Springer  Lecture Notes in Computer Science Vol. 8827 pp. 621-628, CIARP-2014.
  34. H. Allende-Cid, C. Moraga, H. Allende, R. Monge: Regression from Distributed Data Sources Using Discrete Neighborhood Representations and Modified Stalked Generalization Models. 8th International Symposium on Intelligent Distributed Computing, IDC 2014. Proceedings Springer  Studies in Computational Intelligence ISBN 978-3-319-10421-8,  Vol. 570,pp 249-258,  (2015)
  35. T. Mardones, H. Allende, C. Moraga: “Combining Fisher Vectors in image retrieval 4th International Conference on Pattern Recognition Applications and Methods  ICPRAM-2015. In Proceedings of  IEEE Computer Society  ISBN: 978-989-758-077, Vol. 2 pp, 128-135, 2015.
  36. S. Campos, H. Allende: “Imputation Techniques for missing data Heterogeneous datasets: The ADNI Study. XI Congreso Latinoamericano de Sociedades de Estadística CLATSE. In Proceedings of Chilean Society. 2014.
  37. E. López, H. Allende: Forecasting High Frequency Time Series by using machine learning. XI Congreso Latino americano de Sociedades de Estadistica CLATSE. In Proceedings of Chilean Society. 2014.
  38. G. Ulloa, H. Allende-Cid, H. Allende:  “Robust Sieve Bootstrap Prediction Intervals for Contamined Non-linear Processes”. In Lecture Notes in Computer Science Vol. 8258 pp. 84-91 (PART 1), CIARP-2013.  DOI: 10.1007/978-3-642-41822-8_11.
  39. G. Ulloa, H. Allende:  Robust Sieve Bootstrap prediction intervals for contamined BIP-ARMA processes (2013), Proceedings – International Conference of the Chilean Computer Science Society, SCCC, art. no. 6694096, pp. 241-244.    DOI: 10.1109/SCCC.2012.37.
  40. H. Allende, E. Frandi, R. Ñanculef, C. Sartori: Pairwise Away Steps for the Frank-Wolfe Algorithm. Conference (NIPS 2013).
  41. T. Mardones, H. Allende, C.Moraga: Combining descriptors obtained through different sampling techniques in image retrieval. V Chilean workshop on Pattern Recognition (CWPR-2013) 2013.  11-15 Nov 2013, Temuco Chile.
  42. H. Allende, H. Allende-Cid, R.Monge, C.Moraga: Wind Speed Forecasted under a Distributed Learning Approach. V Chilean workshop on Pattern Recognition (CWPR-2013) 2013, 11-15 Nov 2013, Temuco Chile .
  43. F. Ramírez, H. Allende: “Dual Support Vector Domain Description for Imbalanced Classification”. In Lecture Notes in Computer Science Vol. 7552 pp. 710-717, 2012. ICANN- 2012.
  44. P. Ormeño, F. Ramírez, C. Valle, H. Allende-Cid, H. Allende: “Robust Asymmetric Adaboost”. In Lecture Notes in Computer Science, Vol. 7441 pp. 519-526, 2012. CIARP- 2012.
  45. L. Sanz, H. Allende, M. Mendoza: “Text Content Reliability Estimation in Web Documents: A New Proposal”.  In Lecture Notes in Computer Science Vol. 7182 pp. 438-449, 2012. CICLing-2012.
  46. G. Domínguez, J. Zamora, M. Guevara, H. Allende, R. Salas: “Stream Volume Prediction in Twitter with Artificial Neural Networks” In Proceedings of IEEE Computer Society  Vol.  pp. 488-493, 2012.  ICPRAM-2012.
  47. A. Veloz, R. Salas, H. Allende-Cid, H. Allende, SIFAR: “Self-Identification of Lags of an Autoregressive TSK-based Model”. In Proceedings of IEEE Computer Society pp. 226-231, 2012.  The International Symposium on Multiple-Valued Logic, ISMVL-2012.
  48. R. Alfaro, H.  Allende: “Text representation in multi-label text Classification: Two new input representations”. In Lecture Notes in Computer Science Vol. 6594 (Part 2), pp. 61-70. ICANNGA- 2011.
  49. J. Reyes, S. Campos, H. Allende and R. Salas: Zernike’s feature descriptors for Iris Recognition with SVM. SCCC 2011. In Proceedings of IEEE Computer Society, 2011.  SCCC- 2011.
  50. R. Ñanculef, E. López, H. Allende, H. Allende-Cid: “An Ensemble Method for Incremental Classification in Stationary and Non-stationary Environments”. In Lecture Notes in Artificial Intelligence Vol. 7042, pp. 541-548. CIARP-2011.
  51. R. Ñanculef, H. Allende, S. Iodi, C. Sartori: “Two One-Pass Algorithms for Data Stream Classification using approximate MEBs”. In Lecture Notes in Computer Science, Vol. 6594 (Part 2), pp. 363-372. ICANNGA-2011.
  52. R. Alfaro, H. Allende: “A new input representation for multi-label text classification”. The 4th International Conference on Intelligent Information Technology Application, Qinhuangdao / China, November 2010. In IEEE publisher Vol. 1 pp.17-21. IITA-2010.
  53. R. Alfaro, H. Allende: “Multi-label Text Classification with a Robust Label Dependent Representation”. Third Pacific-Asia Conference on Web Mining and Web-based Application, Guilin / China, November 2010. In IEEE publisher Vol. 1 pp 264-276, WMWA-2010.
  54. R. Donoso, A. Veloz, H. Allende: “Modified Expectation Maximization Algorithm for MRI segmentation”. In Lecture Notes in Computer Science: Progress in Pattern Recognition, Image Analysis, Computer Vision.  Vol. 6419, pp. 63-70, CIARP- 2010.
  55. D. Candel, R. Ñanculef, H. Allende: “A Sequential Minimal Optimization Algorithm for the All-Distances Support Vector Machine”.  In Lecture Notes in Computer Science: Progress in Pattern Recognition, Image Analysis, Computer Vision.  Vol. 6419, pp. 484-491, CIARP-2010
  56. R. Alfaro, H. Allende: “Multi-label Text Classification with Label Dependent Representation”. II Chilean Workshop on Pattern Recognition (CWPR 2010), Antofagasta / Chile/ Noviembre 2010. In Ed. Proceedings CPS IEEE Computer Society, SCCC-2010.
  57. F. Ramírez, H. Allende, A. Veloz: “Neuro-fuzzy-based Arrhythmia Classification Using Heart Rate Variability Features”. XXIX International Conference of the Chilean Computer Science Society, SCCC, Antofagasta / Chile/ Noviembre 2010. In Ed. Proceedings CPS IEEE Computer  Society, Vol. 1 pp. 205-211. SCCC-2010.
  58. H. Allende-Cid, J. Mendoza, H. Allende, E. Canessa: Semi-Supervised robust Alternating AdaBoost.  In Lecture Notes in Computer Science: Progress in Pattern Recognition, Image Analysis, Computer Vision.  Vol. 5856, pp. pp 579-586. CIARP-2009.
  59. C. Fernández, F. Saravia, C. Valle, and H. Allende: “Impact Assessment on the Parallel Performance of  Node-Core Combinations in a Multicore Cluster Environment: A  Case  of  Study”. In Proceedings of High-Performance  Computing Symposium Vol.1 pp. 3363-3378. HPC-2010.
  60. A. Veloz, H. Allende-Cid, H. Allende, C. Moraga and R. Salas: A Flexible Neuro-Fuzzy Autoregressive Technique for Non-Linear Time Series Forecasting. In Lecture Notes in Artificial Intelligence; Vol. 5711 (Part 1), pp. 22-29. KES-2009.
  61. S. Campos, R. Salas, H. Allende and C. Castro: Multimodal algorithm for iris recognition with local topological descriptors. In Lecture Notes in Computer Science: Progress in Pattern Recognition, Image Analysis, Computer Vision.  Vol. 5856, pp. 766-773. CIARP- 2009.
  62. C. Saavedra, R. Salas, H. Allende, C. Moraga:  “Fusion of Topology preserving Neural Networks”.  In Lecture Notes in Computer Science Vol. 5572, pp. 517-524. HAIS-2009.
  63. J. Galbíati, H. Allende and C. Becerra:  “Dynamic image segmentation method using hierarchical clustering”. In Lecture Notes in Computer Science: Progress in Pattern Recognition, Image Analysis, Computer Vision.  Vol. 5856, pp. 177-184. CIARP, 2009.
  64. C. Moraga, H. Allende: Walsh matrices in the Design of Industrial Experiments. In Lecture Notes in Computer Science, Vol.5717, pp. 548-554. EUROCAST- 2009.
  65. H. Allende-Cid, A. Veloz, R. Salas, R.S. Chabert, H. Allende: “Self-Organizing Neuro-Fuzzy Inference System”. 13th Iberoamerican Congress on Pattern Recognition (CIARP 2008), La Havana, Cuba. Lecture Notes in Computer Science; Vol. 5197, pp. 429-436. CIARP- 2008.
  66. R. Ñanculef, C. Concha, H. Allende, D. Candell: “Multicategory SVMs by Minimizing the Distances Among Convex-Hull Prototypes”. Proceedings Eight International Conference on Hybrid Intelligence Systems. Ed. Proceedings CPS IEEE Computer Society, Vol. 1 pp. 423-428. HIS-2008.
  67. M. Chacón, H. Allende, M. Lévano and H. Kovak: “Detection of Gene Expressions in Microarrays by   Applying Iteratively Elastic Neural Net”.  In Lecture Notes in Computer Science:  Advanced and Natural Computing Algorithms, Vol. 4432, Nº 1, pp- 355-363. ICANNGA-2007.
  68. H. Allende,  C. Becerra, J. Galbiati: “A segmentation method for digital images based on Cluster Analysis”. In Lecture Notes in Computer Science: Advanced and Natural Computing Algorithms, Vol. 4432, Nº 1, pp- 554-563. ICANNGA-2007.
  69. C. Saavedra, R. Salas, S. Moreno, H. Allende: “Fusion of Self Organizing Maps”. In”. In Lecture Notes in computer Science: International Work-Conference on Artificial Neural Networks Vol. 4507, pp.IWANN-2007.
  70. P. Trejo, R. Ñanculef, H. Allende and C. Moraga: “Probabilistic Aggregation of Classifiers for Incremental Learning”. Computational and Ambient Intelligence. In Lecture Notes in computer Science Vol. 4507, pp. 135-143. IWANN-2007.
  71. R. Ñanculef, C. Valle, H. Allende, C. Moraga: “Two bagging algorithms with coupled learners to encourage diversity”.  In Lecture Notes in computer Science: Advances Intelligent Data Analysis Vol. 4723 pp. 130-139, 2007. IDA -2007.
  72. H. Allende-Cid, R. Salas, H. Allende and J. R. Ñanculef: “Robust Alternating AdaBoost”.  In Lecture Notes Computing Science, Vol. 4756 pp. 427-436. CIARP-2007.
  73. R. Ñanculef, C. Valle, H. Allende and C. Moraga: Bagging with asymmetric costs for misclassified and correctly classified examples. In Lecture Notes in Computer Science, Vol. 4756, pp. 694-703. CIARP-2007.
  74. S. Moreno, H. Allende, R. Salas, C. Saavedra: Fusion of Neural Gas. 2007) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4527 LNCS (PART 1), pp. 558-567.
  75. H. Allende, S. Moreno, R. Salas: “Robust Neural Gas for the analysis of Data with outlier”. In Proceedings IEEE CS Computer Science Society, SCCC’2004, International Conference of the Chilean, pp 149-155. SCCC- 2004.
  1. H. Allende, C. Valle: Ensemble for time series forecasting To appear  Ed. In Springer-Verlag Berlin Germany.  2016
  2. H. Allende-Cid, C. Valle, C. Moraga, H. Allende, R. Salas: “Improving the weighted distribution estimation for AdaBoost using a novel concurrent approach”. Studies in Computational Intelligence. Vol. 616, pp 223-232. 2016.
  3. H. Allende-Cid, C. Moraga, H. Allende, R. Monge: “Regression from Distributed Data Sources Using Discrete Neighborhood Representations and Modified Stalked Generalization Models” In Intelligent Distributed Computing VIII, Studies in Computational Intelligence  Ed. In Springer-Verlag Berlin Germany pp. Vol. 570,  pp. 249-258.  2015.
  4. H. Allende-Cid, C. Moraga, H. Allende, R. Monge: Context-aware Regression from Distributed Sources”. Intelligent Distributed Computing VII, Studies in Computational Intelligence Vol. 511: Ed. Vol. 511, pp17-22. ISBN 978-3-319-01570-5, 2014.  In Springer-Verlag Berlin Germany.
  5. H. Allende, G. Ulloa, H. Allende-Cid: “Prediction intervals in linear models and non-linear Time series with sieve bootstrap Methodology”, Chapter of book to. Empirical Economic and Financial Research – Theory, Methods and Practice- dedicated to the Prof. S. Heiler:  Advanced Studies in Theoretical and Applied Econometrics. In press Ed. In Springer-Verlag Berlin Germany, 2014.
  6. J. Zamora, M. Guevara, G. Dominguez, R. Salas, H. Allende: “On the Understanding of the Stream Volume Behavior on Twitter” In Pattern Recognition Applications and Methods: Advances in Intelligent Systems and Computing, Vol. 204, 2013, pp 171-180, Ed. Springer Verlag   NY, 2013.
  7. H. Allende, C. Moraga, R. Ñanculef, R. Salas: “Ensembles Methods for Machine Learning”, Pattern Recognition and Machine Vision, Editor Patrick Shen-Pei Wang, River Publishing Company, Aalborg, Denmark, pp 247-261, Copenhagen, Denmark, 2010.
  8. R. Ñanculef, C. Concha, C. Moraga, H. Allende: “Multiresolution Fuzzy Rule Systems”. In Computational Intelligence in Theory and Applications: advances in Soft-Computing. Vol. 2, pp. 65-79, Ed. Springer Verlag, NY, 2005.  DOI: 10.1007/3-540-31182-3_7
  9. H. Allende, R. Salas, R. Torres y C. Moraga:  “Modular Neural Network applied to non-stationary Time Series”. Computational Intelligence in Theory and Practice”. In Advances in Soft Computing: Vol. 2, pp. 585-598, Ed. Springer Verlag, NY, 2005.  DOI: 10.1007/3-540-31182-3_54
  10. H. Allende, E. Canessa, and J. Galbiati:  Libro Diseño de Experimentos Industriales. Ed. Editorial Universidad Técnica Federico Santa María Valparaíso, (UTFSM), Valparaíso, Chile, 2005.
  11. H. Allende: Probabilidades y Estadística. Ed. Universidad Técnica Federico Santa María Valparaíso, (UTFSM), Valparaíso, Chile, 1983.
  12. H. Allende: Multicolinealidad en Modelos Econométricos. Monografía, Centro Interamericano de Enseñanza de Estadística (CIENES-OEA), Santiago, Chile, 1981.
  1. H. Hidalgo, H. Allende, R. Salas: “Topological Representation of Digitized Signal Features of Music for Automatic Playlists Generation”. Topological Representation of Digitized Signal Features of Music for Automatic Playlists Generation. Conferencia Latinoamericana de Medios Audiovisuales en Red, LACNEM 2012, 18-19 Octubre 2012, UNAB, Santiago, Chile.
  2. G. Ulloa, E. López, H. Allende: “Intervalos de Predicción Sieve-Bootstrap para Datos Contaminados en Series de Tiempo”. Aceptado en CLATSE 2012 a realizarse en Octubre de 2012.
  3. R. Ñanculef, C. Concha, H. Allende, D. Candel, C. Moraga: SVMs for Multiclass Separation.  Technical Report FSC-2009/04. European Centre for Soft-Computing, Mieres, España. ESSC-2009.
  4. R. Ñanculef, C. Valle, H. Allende, C. Moraga: A New way to control diversity in regression ensembles.  Technical Report FSC-2008/05. European Centre for Soft-Computing, Mieres, España. ESSC-2008.
  5. R. Ñanculef, P. Trejo, H. Allende, C. Moraga, E. López: Classifier ensembles for incremental learning. Technical Report FSC-2008/09. European Centre for Soft-Computing, Mieres, España. ESSC-2008.
  6. H. Allende, I. Suazo, R Salas: “Selección de Arquitectura en Redes Neuronales  Feedforward basado en el análisis de Sensibilidad”.  In Rev. ICHIO 2005. Vol. No.7 ,  pp.1-13. ICHIO-2005.
  7. R. Torres, H. Allende, H. von  Brand, M. Chacón:  “Algoritmo Robusto de  Aprendizaje para el Modelo Mezcla”. In Proceedings  Conferencia Latinoamericana  de Informática Vol. Pp.   1200-1216. 2004. CLEI-2004.